Copied to
clipboard

G = C23.46D28order 448 = 26·7

17th non-split extension by C23 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.46D28, (C2×C28).166D4, (C2×C8).187D14, C28.415(C2×D4), (C2×C4).148D28, C4.11(D14⋊C4), (C2×Dic14)⋊14C4, C22.55(C2×D28), (C22×C14).99D4, C28.44D439C2, C28.24(C22⋊C4), C28.114(C22×C4), (C2×C56).317C22, (C2×C28).771C23, Dic14.25(C2×C4), C2.3(C8.D14), (C22×C4).132D14, C73(C23.38D4), (C2×M4(2)).14D7, C22.26(D14⋊C4), C14.19(C8.C22), (C14×M4(2)).25C2, C4⋊Dic7.283C22, (C22×C28).179C22, (C22×Dic14).14C2, (C2×Dic14).220C22, C23.21D14.16C2, C4.72(C2×C4×D7), (C2×C4).48(C4×D7), (C2×C28).99(C2×C4), C2.26(C2×D14⋊C4), C4.108(C2×C7⋊D4), (C2×C14).161(C2×D4), (C2×C4).75(C7⋊D4), C14.54(C2×C22⋊C4), (C2×C4).719(C22×D7), (C2×C14).18(C22⋊C4), SmallGroup(448,654)

Series: Derived Chief Lower central Upper central

C1C28 — C23.46D28
C1C7C14C28C2×C28C4⋊Dic7C23.21D14 — C23.46D28
C7C14C28 — C23.46D28
C1C22C22×C4C2×M4(2)

Generators and relations for C23.46D28
 G = < a,b,c,d,e | a2=b2=c2=1, d28=e2=c, ab=ba, dad-1=ac=ca, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd27 >

Subgroups: 676 in 150 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, Dic7, C28, C28, C2×C14, C2×C14, C2×C14, Q8⋊C4, C42⋊C2, C2×M4(2), C22×Q8, C56, Dic14, Dic14, C2×Dic7, C2×C28, C2×C28, C22×C14, C23.38D4, C4×Dic7, C4⋊Dic7, C23.D7, C2×C56, C7×M4(2), C2×Dic14, C2×Dic14, C22×Dic7, C22×C28, C28.44D4, C23.21D14, C14×M4(2), C22×Dic14, C23.46D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C8.C22, C4×D7, D28, C7⋊D4, C22×D7, C23.38D4, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C8.D14, C2×D14⋊C4, C23.46D28

Smallest permutation representation of C23.46D28
On 224 points
Generators in S224
(1 213)(2 186)(3 215)(4 188)(5 217)(6 190)(7 219)(8 192)(9 221)(10 194)(11 223)(12 196)(13 169)(14 198)(15 171)(16 200)(17 173)(18 202)(19 175)(20 204)(21 177)(22 206)(23 179)(24 208)(25 181)(26 210)(27 183)(28 212)(29 185)(30 214)(31 187)(32 216)(33 189)(34 218)(35 191)(36 220)(37 193)(38 222)(39 195)(40 224)(41 197)(42 170)(43 199)(44 172)(45 201)(46 174)(47 203)(48 176)(49 205)(50 178)(51 207)(52 180)(53 209)(54 182)(55 211)(56 184)(57 130)(58 159)(59 132)(60 161)(61 134)(62 163)(63 136)(64 165)(65 138)(66 167)(67 140)(68 113)(69 142)(70 115)(71 144)(72 117)(73 146)(74 119)(75 148)(76 121)(77 150)(78 123)(79 152)(80 125)(81 154)(82 127)(83 156)(84 129)(85 158)(86 131)(87 160)(88 133)(89 162)(90 135)(91 164)(92 137)(93 166)(94 139)(95 168)(96 141)(97 114)(98 143)(99 116)(100 145)(101 118)(102 147)(103 120)(104 149)(105 122)(106 151)(107 124)(108 153)(109 126)(110 155)(111 128)(112 157)
(1 213)(2 214)(3 215)(4 216)(5 217)(6 218)(7 219)(8 220)(9 221)(10 222)(11 223)(12 224)(13 169)(14 170)(15 171)(16 172)(17 173)(18 174)(19 175)(20 176)(21 177)(22 178)(23 179)(24 180)(25 181)(26 182)(27 183)(28 184)(29 185)(30 186)(31 187)(32 188)(33 189)(34 190)(35 191)(36 192)(37 193)(38 194)(39 195)(40 196)(41 197)(42 198)(43 199)(44 200)(45 201)(46 202)(47 203)(48 204)(49 205)(50 206)(51 207)(52 208)(53 209)(54 210)(55 211)(56 212)(57 130)(58 131)(59 132)(60 133)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 141)(69 142)(70 143)(71 144)(72 145)(73 146)(74 147)(75 148)(76 149)(77 150)(78 151)(79 152)(80 153)(81 154)(82 155)(83 156)(84 157)(85 158)(86 159)(87 160)(88 161)(89 162)(90 163)(91 164)(92 165)(93 166)(94 167)(95 168)(96 113)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)(103 120)(104 121)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 128)(112 129)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 126 29 154)(2 80 30 108)(3 124 31 152)(4 78 32 106)(5 122 33 150)(6 76 34 104)(7 120 35 148)(8 74 36 102)(9 118 37 146)(10 72 38 100)(11 116 39 144)(12 70 40 98)(13 114 41 142)(14 68 42 96)(15 168 43 140)(16 66 44 94)(17 166 45 138)(18 64 46 92)(19 164 47 136)(20 62 48 90)(21 162 49 134)(22 60 50 88)(23 160 51 132)(24 58 52 86)(25 158 53 130)(26 112 54 84)(27 156 55 128)(28 110 56 82)(57 181 85 209)(59 179 87 207)(61 177 89 205)(63 175 91 203)(65 173 93 201)(67 171 95 199)(69 169 97 197)(71 223 99 195)(73 221 101 193)(75 219 103 191)(77 217 105 189)(79 215 107 187)(81 213 109 185)(83 211 111 183)(113 170 141 198)(115 224 143 196)(117 222 145 194)(119 220 147 192)(121 218 149 190)(123 216 151 188)(125 214 153 186)(127 212 155 184)(129 210 157 182)(131 208 159 180)(133 206 161 178)(135 204 163 176)(137 202 165 174)(139 200 167 172)

G:=sub<Sym(224)| (1,213)(2,186)(3,215)(4,188)(5,217)(6,190)(7,219)(8,192)(9,221)(10,194)(11,223)(12,196)(13,169)(14,198)(15,171)(16,200)(17,173)(18,202)(19,175)(20,204)(21,177)(22,206)(23,179)(24,208)(25,181)(26,210)(27,183)(28,212)(29,185)(30,214)(31,187)(32,216)(33,189)(34,218)(35,191)(36,220)(37,193)(38,222)(39,195)(40,224)(41,197)(42,170)(43,199)(44,172)(45,201)(46,174)(47,203)(48,176)(49,205)(50,178)(51,207)(52,180)(53,209)(54,182)(55,211)(56,184)(57,130)(58,159)(59,132)(60,161)(61,134)(62,163)(63,136)(64,165)(65,138)(66,167)(67,140)(68,113)(69,142)(70,115)(71,144)(72,117)(73,146)(74,119)(75,148)(76,121)(77,150)(78,123)(79,152)(80,125)(81,154)(82,127)(83,156)(84,129)(85,158)(86,131)(87,160)(88,133)(89,162)(90,135)(91,164)(92,137)(93,166)(94,139)(95,168)(96,141)(97,114)(98,143)(99,116)(100,145)(101,118)(102,147)(103,120)(104,149)(105,122)(106,151)(107,124)(108,153)(109,126)(110,155)(111,128)(112,157), (1,213)(2,214)(3,215)(4,216)(5,217)(6,218)(7,219)(8,220)(9,221)(10,222)(11,223)(12,224)(13,169)(14,170)(15,171)(16,172)(17,173)(18,174)(19,175)(20,176)(21,177)(22,178)(23,179)(24,180)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,193)(38,194)(39,195)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,141)(69,142)(70,143)(71,144)(72,145)(73,146)(74,147)(75,148)(76,149)(77,150)(78,151)(79,152)(80,153)(81,154)(82,155)(83,156)(84,157)(85,158)(86,159)(87,160)(88,161)(89,162)(90,163)(91,164)(92,165)(93,166)(94,167)(95,168)(96,113)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,126,29,154)(2,80,30,108)(3,124,31,152)(4,78,32,106)(5,122,33,150)(6,76,34,104)(7,120,35,148)(8,74,36,102)(9,118,37,146)(10,72,38,100)(11,116,39,144)(12,70,40,98)(13,114,41,142)(14,68,42,96)(15,168,43,140)(16,66,44,94)(17,166,45,138)(18,64,46,92)(19,164,47,136)(20,62,48,90)(21,162,49,134)(22,60,50,88)(23,160,51,132)(24,58,52,86)(25,158,53,130)(26,112,54,84)(27,156,55,128)(28,110,56,82)(57,181,85,209)(59,179,87,207)(61,177,89,205)(63,175,91,203)(65,173,93,201)(67,171,95,199)(69,169,97,197)(71,223,99,195)(73,221,101,193)(75,219,103,191)(77,217,105,189)(79,215,107,187)(81,213,109,185)(83,211,111,183)(113,170,141,198)(115,224,143,196)(117,222,145,194)(119,220,147,192)(121,218,149,190)(123,216,151,188)(125,214,153,186)(127,212,155,184)(129,210,157,182)(131,208,159,180)(133,206,161,178)(135,204,163,176)(137,202,165,174)(139,200,167,172)>;

G:=Group( (1,213)(2,186)(3,215)(4,188)(5,217)(6,190)(7,219)(8,192)(9,221)(10,194)(11,223)(12,196)(13,169)(14,198)(15,171)(16,200)(17,173)(18,202)(19,175)(20,204)(21,177)(22,206)(23,179)(24,208)(25,181)(26,210)(27,183)(28,212)(29,185)(30,214)(31,187)(32,216)(33,189)(34,218)(35,191)(36,220)(37,193)(38,222)(39,195)(40,224)(41,197)(42,170)(43,199)(44,172)(45,201)(46,174)(47,203)(48,176)(49,205)(50,178)(51,207)(52,180)(53,209)(54,182)(55,211)(56,184)(57,130)(58,159)(59,132)(60,161)(61,134)(62,163)(63,136)(64,165)(65,138)(66,167)(67,140)(68,113)(69,142)(70,115)(71,144)(72,117)(73,146)(74,119)(75,148)(76,121)(77,150)(78,123)(79,152)(80,125)(81,154)(82,127)(83,156)(84,129)(85,158)(86,131)(87,160)(88,133)(89,162)(90,135)(91,164)(92,137)(93,166)(94,139)(95,168)(96,141)(97,114)(98,143)(99,116)(100,145)(101,118)(102,147)(103,120)(104,149)(105,122)(106,151)(107,124)(108,153)(109,126)(110,155)(111,128)(112,157), (1,213)(2,214)(3,215)(4,216)(5,217)(6,218)(7,219)(8,220)(9,221)(10,222)(11,223)(12,224)(13,169)(14,170)(15,171)(16,172)(17,173)(18,174)(19,175)(20,176)(21,177)(22,178)(23,179)(24,180)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,193)(38,194)(39,195)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,141)(69,142)(70,143)(71,144)(72,145)(73,146)(74,147)(75,148)(76,149)(77,150)(78,151)(79,152)(80,153)(81,154)(82,155)(83,156)(84,157)(85,158)(86,159)(87,160)(88,161)(89,162)(90,163)(91,164)(92,165)(93,166)(94,167)(95,168)(96,113)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,126,29,154)(2,80,30,108)(3,124,31,152)(4,78,32,106)(5,122,33,150)(6,76,34,104)(7,120,35,148)(8,74,36,102)(9,118,37,146)(10,72,38,100)(11,116,39,144)(12,70,40,98)(13,114,41,142)(14,68,42,96)(15,168,43,140)(16,66,44,94)(17,166,45,138)(18,64,46,92)(19,164,47,136)(20,62,48,90)(21,162,49,134)(22,60,50,88)(23,160,51,132)(24,58,52,86)(25,158,53,130)(26,112,54,84)(27,156,55,128)(28,110,56,82)(57,181,85,209)(59,179,87,207)(61,177,89,205)(63,175,91,203)(65,173,93,201)(67,171,95,199)(69,169,97,197)(71,223,99,195)(73,221,101,193)(75,219,103,191)(77,217,105,189)(79,215,107,187)(81,213,109,185)(83,211,111,183)(113,170,141,198)(115,224,143,196)(117,222,145,194)(119,220,147,192)(121,218,149,190)(123,216,151,188)(125,214,153,186)(127,212,155,184)(129,210,157,182)(131,208,159,180)(133,206,161,178)(135,204,163,176)(137,202,165,174)(139,200,167,172) );

G=PermutationGroup([[(1,213),(2,186),(3,215),(4,188),(5,217),(6,190),(7,219),(8,192),(9,221),(10,194),(11,223),(12,196),(13,169),(14,198),(15,171),(16,200),(17,173),(18,202),(19,175),(20,204),(21,177),(22,206),(23,179),(24,208),(25,181),(26,210),(27,183),(28,212),(29,185),(30,214),(31,187),(32,216),(33,189),(34,218),(35,191),(36,220),(37,193),(38,222),(39,195),(40,224),(41,197),(42,170),(43,199),(44,172),(45,201),(46,174),(47,203),(48,176),(49,205),(50,178),(51,207),(52,180),(53,209),(54,182),(55,211),(56,184),(57,130),(58,159),(59,132),(60,161),(61,134),(62,163),(63,136),(64,165),(65,138),(66,167),(67,140),(68,113),(69,142),(70,115),(71,144),(72,117),(73,146),(74,119),(75,148),(76,121),(77,150),(78,123),(79,152),(80,125),(81,154),(82,127),(83,156),(84,129),(85,158),(86,131),(87,160),(88,133),(89,162),(90,135),(91,164),(92,137),(93,166),(94,139),(95,168),(96,141),(97,114),(98,143),(99,116),(100,145),(101,118),(102,147),(103,120),(104,149),(105,122),(106,151),(107,124),(108,153),(109,126),(110,155),(111,128),(112,157)], [(1,213),(2,214),(3,215),(4,216),(5,217),(6,218),(7,219),(8,220),(9,221),(10,222),(11,223),(12,224),(13,169),(14,170),(15,171),(16,172),(17,173),(18,174),(19,175),(20,176),(21,177),(22,178),(23,179),(24,180),(25,181),(26,182),(27,183),(28,184),(29,185),(30,186),(31,187),(32,188),(33,189),(34,190),(35,191),(36,192),(37,193),(38,194),(39,195),(40,196),(41,197),(42,198),(43,199),(44,200),(45,201),(46,202),(47,203),(48,204),(49,205),(50,206),(51,207),(52,208),(53,209),(54,210),(55,211),(56,212),(57,130),(58,131),(59,132),(60,133),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,141),(69,142),(70,143),(71,144),(72,145),(73,146),(74,147),(75,148),(76,149),(77,150),(78,151),(79,152),(80,153),(81,154),(82,155),(83,156),(84,157),(85,158),(86,159),(87,160),(88,161),(89,162),(90,163),(91,164),(92,165),(93,166),(94,167),(95,168),(96,113),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119),(103,120),(104,121),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,128),(112,129)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,126,29,154),(2,80,30,108),(3,124,31,152),(4,78,32,106),(5,122,33,150),(6,76,34,104),(7,120,35,148),(8,74,36,102),(9,118,37,146),(10,72,38,100),(11,116,39,144),(12,70,40,98),(13,114,41,142),(14,68,42,96),(15,168,43,140),(16,66,44,94),(17,166,45,138),(18,64,46,92),(19,164,47,136),(20,62,48,90),(21,162,49,134),(22,60,50,88),(23,160,51,132),(24,58,52,86),(25,158,53,130),(26,112,54,84),(27,156,55,128),(28,110,56,82),(57,181,85,209),(59,179,87,207),(61,177,89,205),(63,175,91,203),(65,173,93,201),(67,171,95,199),(69,169,97,197),(71,223,99,195),(73,221,101,193),(75,219,103,191),(77,217,105,189),(79,215,107,187),(81,213,109,185),(83,211,111,183),(113,170,141,198),(115,224,143,196),(117,222,145,194),(119,220,147,192),(121,218,149,190),(123,216,151,188),(125,214,153,186),(127,212,155,184),(129,210,157,182),(131,208,159,180),(133,206,161,178),(135,204,163,176),(137,202,165,174),(139,200,167,172)]])

82 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4L7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order12222244444···4777888814···1414···1428···2828···2856···56
size111122222228···2822244442···24···42···24···44···4

82 irreducible representations

dim11111122222222244
type++++++++++++--
imageC1C2C2C2C2C4D4D4D7D14D14C4×D7D28C7⋊D4D28C8.C22C8.D14
kernelC23.46D28C28.44D4C23.21D14C14×M4(2)C22×Dic14C2×Dic14C2×C28C22×C14C2×M4(2)C2×C8C22×C4C2×C4C2×C4C2×C4C23C14C2
# reps14111831363126126212

Matrix representation of C23.46D28 in GL6(𝔽113)

100000
010000
001000
000100
00001120
00000112
,
11200000
01120000
001000
000100
000010
000001
,
100000
010000
00112000
00011200
00001120
00000112
,
391050000
77740000
000080104
00009112
0048100
00325500
,
8560000
39280000
00637100
00735000
00002442
00003289

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[39,77,0,0,0,0,105,74,0,0,0,0,0,0,0,0,4,32,0,0,0,0,81,55,0,0,80,9,0,0,0,0,104,112,0,0],[85,39,0,0,0,0,6,28,0,0,0,0,0,0,63,73,0,0,0,0,71,50,0,0,0,0,0,0,24,32,0,0,0,0,42,89] >;

C23.46D28 in GAP, Magma, Sage, TeX

C_2^3._{46}D_{28}
% in TeX

G:=Group("C2^3.46D28");
// GroupNames label

G:=SmallGroup(448,654);
// by ID

G=gap.SmallGroup(448,654);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,232,254,387,142,1123,136,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=e^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^27>;
// generators/relations

׿
×
𝔽